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Introduction and Scope 
 
Estimation of abundance and distribution is a central theme in Ecology, and application 
of statistical methods to this question has been a thread throughout the history of the 
science.  There is a substantial body of work on this topic, which has expanded rapidly 
with the development of the conservation biology literature.  The focus of this document 
is to give a brief review of the philosophies that underlie the available methods, to discuss 
the issues that any analyses of the available data will have to accommodate, and finally 
suggest a method that may be useful in the analysis.  
 
 
Analysis Philosophy 
 
There are at least two possible approaches to take in analyzing the bird count data, and 
while either method will produce useful results it is important to make an informed 
choice between methods, as there are trade-offs.  The basic choice is between modeling 
the counts as a phenomena of themselves, or trying to model the underlying population 
dynamics, out of which one can extract the counts.  Past analyses of seabird trends have 
taken the approach of modeling the counts themselves (e.g. Woehler, Cooper et al. 2001), 
and have been able to produce both reasonable fits to the data and useful results.  In 
general, this approach starts from the presumption that the count data is either Negative 
Binomially or Poisson distributed, and then uses an expression which is related to the 
either the shape or scale parameters (Negative Binomial) or mean of the distribution 
(Poisson) incorporating time and other potential covariates of interest.  There are a 
variety of methods for analyzing the data in this context, largely dependent on the 
functional form chosen for the explanatory variables.  If linear predictors are desired, one 
might use a generalized linear model or GLM (Venables and Ripley 1999), and for 
situations where linearity cannot be assumed on might use a generalized additive model 
or GAM (Venables and Ripley 1999).  Subsequent to exploration with a GAM, a 
polynomial of suitable order could be substituted in a GLM.  Further extensions are 
available using generalized linear mixed models, or GLMMs, in which some of the 
factors are fixed effects and others are random terms (Pinheiro and Bates 2000).  These 
are particularly useful in cases where observation error occurs, and can be used to model 
the process inducing error thus removing one source of error from the time trend of 
interest.   
 
An alternative approach to phenomenological modeling of the counts is to start explicitly 
from the biological process, modeling the counts as an outcome of the growth or decline 
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in the population under study.  In this case the model is specified based on the life history 
and dynamical processes of the population, its parameters are estimated based on the 
count data, and then the trend in population size, i.e. the population growth rate, is 
inferred.  As in the count modeling approach, these models range from very simple to 
quite complex.  Dennis (1991) proposed a method for estimating the parameters in a very 
simple population model from count data.  A very lucid discussion of this model and its 
extensions, along with instructions for estimating the parameters can be found in Morris 
and Doak (2002).  The model is based on a diffusion approximation, and while there are 
clearly simplifying assumptions underlying this approach, it is well accepted in the 
biological literature and has been widely applied.  At the opposite end of this scale are 
integrated assessment models, in which the underlying biological model might include 
survival, growth, and fecundity rates and variances for each age or size class, which are 
estimated across all available data including population counts, demographic data such as 
nest surveys, and values available in the literature.  Tuck et al. (2001) applied a method 
along these lines to estimate the impacts of fishery bycatch mortality on albatross, and 
they have been widely applied elsewhere in fisheries management. 
 
There is substantial overlap between the count modeling and the population modeling 
approaches.  In fact, in the simplest versions of either model one is basically fitting a 
linear expression to the log of the count data.  The essential difference is that in one case 
the model is concerned with the outcomes of the process (i.e. the counts themselves), 
while in the other it is concerned with the process of going from one count to the next 
(i.e. the biological process driving the counts).  This difference in the analysis method 
affects its flexibility in matching the process, and the potential applications of parameters 
estimated in the model.  Two examples will make these distinctions readily clear.  A 
Poisson random variable can take integer values between 0 and infinity.  If one is using a 
Poisson-based model to represent counts for a seabird population where there are a 
limited number of nesting sites available, the true count cannot exceed the number of 
nesting sites, although the statistical model will attach a nonzero probability to values 
above this ceiling.  This lack of flexibility in the phenomenological approach is a 
fundamental result of assuming a random process (the Poisson process) that is 
phenomenologically similar, but mechanistically dissimilar to the actual biological 
process (births and deaths of individuals).  The second, and potentially more important 
reason for using a biological process model, even a simple one, is that its parameters have 
meaningful interpretations.  Thus in the case of a model fitted to a declining population, 
since the parameters can be linked to quantities that can be modified in the field, they 
may be informative about what actions might be taken to ameliorate the decline.  For 
instance, in the limited nesting site example one might be able to distinguish between a 
loss of suitable habitat (i.e. a lower number of nesting sites) and a change in the 
population growth rate as causes for a change in the population counts over time.  
Depending on the methodology used for estimating the parameters in the biological 
model, there are also a number of other useful aspects which deserve mention.  In 
biological models estimates for similar parameters (e.g. per capita fecundity) can be 
compared across models of differing complexity, and information can be transferred from 
data-rich to data-poor species.  This requires estimating the models in a Bayesian 
framework, the discussion of which is beyond the scope of this paper.  However, these 
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methods are well developed in fisheries and would be reasonably straightforward to apply 
to the types of models suggested here. 
 
A further consideration in deciding between analysis methods is exactly what is meant by 
status, and how that will be quantified.  There are at least two approaches to this issue, 
the assessment of status can be done based on the historic trend in counts or can be done 
based on forward projection of the counts.  Typically, the historic analysis would involve 
testing whether there is a negative slope in the temporal trend in counts, in the case of 
Poisson regression, or whether the estimated population growth rate is negative in the 
case of a process model.  An alternative, and preferable model is to compare the fit to the 
data of model with a trend versus the fit of a model assuming constant abundance or 
counts using a metric like AIC, as this avoids the problems of non-detection and power 
that have been widely discussed with monitoring based on null hypothesis test statistics.  
The forward projection approach has recently been suggested as a preferable to the use of 
historic trend for assessing status (Staples, Taper et al. 2005).  The idea is to utilize the 
model that has been parameterized from the count data to predict the future abundance or 
count.  A threshold is then set for the acceptable level of abundance, and the trend 
monitored is the likelihood of crossing that threshold over time.  The approach has been 
championed for several  reasons: 1) it projects forward, and is likely to indicate problems 
earlier than methods that look at historic trends; 2) status has a clear interpretation in the 
context of biodiversity protection policy; 3) relative risk (i.e. is risk increasing between 
years) has been shown to be robust to model misspecifications, e.g. not including density 
dependence; 4) the method requires relatively little data, and thus is not dependent on 
long time series (Staples, Taper et al. 2005).  Staples et al. (Staples, Taper et al. 2005) 
provide a cogent discussion of this approach, and apply a diffusion approximation as 
suggested in the next section, demonstrating that it performs well for this purpose in a 
variety of situations. 
 
 
Analysis Methodology 
 
There are a variety of statistical packages that can be used to implement the analysis of 
the count data in a phenomenological approach, and the methods are well documented 
and generally accepted in the scientific literature.  While there are certainly issues with 
assumptions underlying the analysis, such as how faithfully the distribution of the 
observations follows a Poisson, these can generally be accommodated through 
modifications to either the statistical model or transformation of the data.  The TRIM 
package (http://firmy.publikuj.cz/EBCC/index.php?ID=13) is designed for analysis of count data, 
and incorporates a number of very useful features and would be a satisfactory package for 
doing a phenomenological analysis. 
 
There are also well developed methods for estimating the parameters in the biological 
process models, although there is not a widely accepted standard package for estimation 
along the lines of TRIM.  However, the computational methods are well known and 
easily implemented in a simple statistical language or in a spreadsheet.  The attached 
spreadsheet estimates a diffusion approximation-based population model for a simple set 

http://firmy.publikuj.cz/EBCC/index.php?ID=13
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of count data.  However, to get the error estimates around the rate of population change 
and the variance in the population change process it is easier to implement the analysis in 
a statistical language.  R is a free statistical language and software package that readily 
runs on any platform.  The following page contains instructions and code for 
implementing the analysis discussed in Morris and Doak (2002) for a density independent 
model (see Chapter 3, p. 51).  Morris and Doak (2002) discuss various applications of the 
parameter estimates and diagnostic measures that can be used, along with model 
extensions.  The R code provided in the next section can be readily modified for these 
purposes. 
 
There are a few methodological differences that are important to point out in comparing 
the two analysis approaches.  The TRIM package includes an alternative formulation of 
the likelihood for the Poisson model, to account for the non-independence of successive 
counts ( a violation of the assumptions of standard GLMs).  In comparison, the 
population dynamics models discussed here are a class of first order Markov processes, 
that is the value at the next time depends on the preceding value.  In contrast to the 
Poisson GLM approach, the Markov models of the biological process assume that 
successive observations are correlated – and in fact are modeling the process that creates 
that correlation.  However, these simple biological models assume that the rate of change 
in abundance is constant.  That is, although the counts might change between years, the 
rate of that change is constant.  There are methods for looking for discontinuities in the 
rate of change, as discussed by Morris and Doak (2002), and simple extensions are not 
difficult to implement.  However, complex patterns in the rate of change across locations, 
through time, or with other conditions require more complex analyses.  In this respect the 
TRIM package is more flexible in that it can accommodate covariates readily. 
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Sample R code  
 
This code will estimate the population growth rate “mu”, the 95% confidence interval 
around the mean, and the variance “sigma.sq” for a density independent diffusion 
approximation model as per Morris and Doak 2002.   
 
To run the R code, the file “data for R.csv” needs to be created in the attached excel 
spreadsheet by replacing the data in the “sample data” sheet of the “sample analysis” 
workbook.  Change to the sheet “export to R” and save this as a .csv file to the directory 
you want to work from.  Be sure to paste the formulae down so all of the data is included.  
Then start R and set the working directory to the one where “data for R.csv” is saved.  
Paste the code below into the R window.  Type “mu”, “mu.confidence.interval” or 
“sigma.sq” and the respective values will be printed to the screen.  
 
raw.data <- read.csv("data for R.csv",header=T) 
as.data.frame(raw.data) 
attach(raw.data) 
DA.est <- lm(trans.ln.change~0 + trans.interval) 
Mu <- coefficients(DA.est) 
names(Mu) = NULL 
sigma.sq <- anova(DA.est)$"Mean Sq"[2] 
Mu.confidence.interval <- confint(DA.est,1) 
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